skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 23, 2026
  2. Free, publicly-accessible full text available March 19, 2026
  3. Submitted Article 
    more » « less
    Free, publicly-accessible full text available February 20, 2026
  4. A new framework, called , for the combined study of both hard and soft transverse momentum sectors in high-energy proton-proton ( p p ) and proton-nucleus ( p A ) collisions is set up. A dynamical initial state is set up using the model with transverse locations of hotspots within each incoming nucleon. A hard scattering that emanates from two colliding hotspots is carried out using the Pythia generator. Initial state radiation from the incoming hard partons is carried out in a new module called , which includes the longitudinal location of initial splits. The energy-momentum of both the initial hard partons and their associated beam remnants is removed from the hot spots, depleting the energy-momentum available for the formation of the bulk medium. Outgoing showers are simulated using the generator, and results are presented for both cases, allowing for and not allowing for energy loss. First comparisons between this hard-soft model and single inclusive hadron and jet data from p p and minimum bias p Pb collisions are presented. Single hadron spectra in p p are used to carry out a limited (in number of parameters) Bayesian calibration of the model. Fair comparisons with data are indicative of the utility of this new framework. Theoretical studies of the correlation between jet p T and event activity at mid and forward rapidity are carried out. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  5. An investigation of high-transverse-momentum (high- p T ) photon-triggered jets in proton-proton ( p p ) and ion-ion ( A A ) collisions at s N N = 0.2 and 5.02 TeV is carried out, using the multistage description of in-medium jet evolution. Monte Carlo simulations of hard scattering and energy loss in heavy-ion collisions are performed using parameters tuned in a previous study of the nuclear modification factor ( R A A ) for inclusive jets and high- p T hadrons. We obtain a good reproduction of the experimental data for photon-triggered jet R A A , as measured by the ATLAS detector, the distribution of the ratio of jet to photon p T ( X J γ ), measured by both CMS and ATLAS, and the photon-jet azimuthal correlation as measured by CMS. We obtain a moderate description of the photon-triggered jet I A A , as measured by STAR. A noticeable improvement in the comparison is observed when one goes beyond prompt photons and includes bremsstrahlung and decay photons, revealing their significance in certain kinematic regions, particularly at X J γ > 1 . Moreover, azimuthal angle correlations demonstrate a notable impact of bremsstrahlung photons on the distribution, emphasizing their role in accurately describing experimental results. This work highlights the success of the multistage model of jet modification to straightforwardly predict (this set of) photon-triggered jet observables. This comparison, along with the role played by bremsstrahlung photons, has important consequences on the inclusion of such observables in a future Bayesian analysis. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026